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ABSTRACT

Acoustic shadows appear in ultrasound images as regions of

low signal intensity after boundaries with very high acous-

tic impedance differences. Acoustic shadows can be viewed

as informative features to detect lesions or calcifications, or

can be considered as damageable artifacts for image process-

ing tasks such as segmentation, registration or 3D reconstruc-

tion. In both cases, the detection of these acoustic shadows is

useful. This paper proposes a new geometrical method to de-

tect these shadows based on statistical analysis of intensity

profiles along the lines that compose the B-scan image. The

results demonstrate that this detection improves the accuracy

of 3D reconstruction of intraoperative ultrasound.

Index Terms— Biomedical image processing, Biomedi-

cal acoustics, Image restoration

1. INTRODUCTION

The image formation process of ultrasound images is bound

to the propagation and interaction of waves in tissues of vari-

ous acoustic impedances. More precisely, at the boundary of

two materials, the wave energy is transmitted, reflected, dis-

persed and/or diffracted. If the wave energy is almost totally

reflected, this will result in an acoustic shadow in the region of

the image beyond the boundary. The motivation for detecting

acoustic shadows is twofold. First, the presence of an acoustic

shadow reflects the presence of an interface where the acous-

tic energy was almost completely lost. This is typically an

interface tissue/air or tissue/bone. Therefore, acoustic shad-

ows can be used to detect lesions [1], calcifications, gallstones

or bone structures. Second, acoustic shadows might limit the

efficiency of image processing techniques like segmentation,

registration [2, 3] or 3D reconstruction. This paper will fo-

cus on the impact of shadow estimation on image processing

tasks and more precisely on 3D reconstruction of 2D tracked

freehand ultrasound intraoperative data.

2. RELATED WORK

Only a few papers have presented methods to detect acous-

tic shadows. Methods can be broadly sorted in two groups:

intensity-based methods [4, 1] and geometric methods [2, 3].

Intensity-based methods rely on a direct analysis of the inten-

sities to detect dark regions. Madabhusi et al. [4] describe

a method that combines a feature space extraction, manual

training and classification to discriminate lesions from poste-

rior acoustic shadowing. Drukker et al. [1] use a threshold on

a local skewness map to detect shadows. Geometric methods

take into account the probe’s geometry and analyze intensity

profiles along the lines that compose the B-scan. Leroy et al.
[2] fit an heuristic exponential function to determine whether

a shadow occured, while Penney et al. [3] manually estimate

the image mask to determine dark areas. The method pro-

posed in this paper belongs to the latter class of methods -

geometrical methods. Contrary to previous papers, the image

mask, the probe geometry and the statistical detection thresh-

old are estimated automatically. Rather than fitting heuris-

tic function to detect shadows, a statistical analysis is per-

formed along each transducer line to detect potential shadows

regions. The latter are modeled as ruptures (or breaks) along

the intensity profiles coupled with a statistical noise test.

3. METHOD

3.1. Overview

Since the presence of acoustic shadows are bound to the ge-

ometry of the probe and to the propagation of the signal along

the lines that compose the B-scan, it is necessary to estimate

the probe’s shape. Then, a signal analysis is performed along

the lines that compose the B-scan. An acoustic shadow is de-

tected along a line when two criteria are met: (1) a rupture

along a line exists and (2) the signal distribution after the rup-

ture is statistically compliant with an estimated noise model.
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3.2. B-scan geometry extraction

Given a sequence of 2D ultrasound images (see a typical im-

age in figure 1-a), it is necessary to separate the image and the

background. This amounts to computing a 2D mask given the

2D + t sequence. To do so, maps of longitudinal mean and

variance are computed, and multiplied pixelwise to compute

a feature map. For a given point, the longitudinal mean is

defined as the mean at a 2D pixel location over time. Back-

ground pixels are dark and have low (or zero) variance. Points

in the image foreground have the highest values of the fea-

ture map (compared to the background). Then, points with

the highest values of the feature map are retained (see figure

1-b). Some false detections exist, mainly due to textual data

and complementary image information presented on the ultra-

sound machine display. Therefore, a morphological closing

and opening are performed to clean the input mask (see fig-

ure 1-c). To estimate the probe geometry, a trapezoid model

is fit to the input mask. The trapezoid model is the simplest

model capable of capturing the geometry of a linear or curvi-

linear probe. The 5 parameters of the model are estimated by

optimizing the total performance measure φ (see figure 1-d)

that is defined as:

φ =
TP + TN

TP + TN + FP + FN

′
(1)

where TP is the number of true positives, TN the number of

true negatives, FP the number of false positives and FN the

number of false negatives. For the model estimation, accu-

racy is needed for the extremal lines of the trapezoid. Several

experiments were conducted with three different acquisition

systems (various video acquisition cards and echographic ma-

chines) and demonstrated that the method performs robustly

in all cases tested.

(a) Typical image (b) First mask

(c) Cleaned mask (d) Trapezoid estimation

Fig. 1. Illustration of the automatic mask extraction. (a)

shows a typical image of the acquired sequence. (b) shows

the first mask obtained after selecting the highest values of

the longitudinal statistics. (c) shows the mask after morpho-

logical operators were applied to remove patient information.

(d) shows the final trapezoid model estimation.

3.3. Line rupture detection

Once the probe’s geometry is estimated, it is possible to know

whether the direction of scanning is top-down or bottom-up

when a curvilinear probe is used. For a linear probe, the user

must specify the direction of scanning (it is generally top-

down except if the video grabber flipped the image). After-

wards, it is necessary to sample line profiles corresponding

to the transducer lines. For each B-scan, an arbitrary number

of lines can be drawn and for each line, k samples are com-

puted by trilinear interpolation in the corresponding B-scan.

As mentionned previously, the shadow is defined as a signal

rupture along the line, followed by a low signal afterwards.

Therefore, signal ruptures are detected first. To do so, the line

signal is smoothed with a low-pass filter. Then, a local sym-

metric entropy criterion is computed. For each point p of the

line signal S, a sliding window of size n is used to compute

the rupture criterionR:

R =
i=n∑
i=1

(
S(p− i) log

S(p− i)
S(p + i)

+ S(p + i) log
S(p + i)
S(p− i)

)

The loci where R is maximal indicate a signal rupture. The

rupture criterionR is quite general since it relies on the statis-

tical dependency between the future and the past samples in

a sliding window. Rupture positions are determined as zero-

crossings of the gradient ofR. Figure 2 illustrates the rupture

detection on a synthetic example.

(a) Input signal (b) Attenuation (c) Added noise

(d) Filtered signal (e) Rupture detection (f) Rupture gradient

Fig. 2. Illustration of the line processing on a synthetic signal.

(a): a synthetic ramp signal is used as an input. (b): an ex-

ponential attenuation is applied. (c): multiplicative Rayleigh

noise is added. (d): the signal is smoothed with a low-pass

filter. (e): the local rupture criterion R is computed, as well

as its gradient in (f). All loci of a gradient zero-crossing are

tested as possible candidates for a shadow detection.

3.4. Noise model and shadow detection

Each detected rupture is tested as a possible candidate for an

acoustic shadow. To design the detection test, we rely on a

1570



modeling of the ultrasound image statistics. Because of the

difficulty to model the ultrasound image formation process,

several models have been introduced so far. We use here a

general model that has been successfully used for ultrasound

images [5, 6, 7]. This model reads as:

u(x) = v(x) +
√

v(x) · μ(x) with μ(x) ∼ N (0, σ2), (2)

where u is the observed image and v the ”ideal” signal. In

this model, the noise depends on the signal intensity. In other

words, the noise is higher in bright areas. We shall assume

here that acoustic shadows are areas where the original signal

v is constant with a relatively small value. When a rupture is

detected and tested as a candidate for a shadow, let us denote

E(uf ) (respectively V(uf )) the mean (respectively the vari-

ance) of the signal after the rupture. According to the noise

model of equation 2, the shadow detection test reads as:

V(uf ) < E(uf ) · σ2. (3)

We thus end up with estimating the parameter σ. To do so, we

follow the approach described in [8]. On local square patches

that intersect the B-scan mask, the local mean μ and variance

ϑ are computed. The parameter σ can be interpreted as the

linear regression parameter of the variance versus the mean:

ϑ = σ2 · μ + ε. This is true when patches are homogeneous,

i.e. intersect only one anatomical tissue. This cannot be true

in practice, as illustrated in figure 3-(a) where two regions R1

and R2 intersect the patch. Therefore, robust M-estimators

are used to compute a robust mean and variance. The normal

computation of local statistics is shown in figure 3-(b), while

the robust computation of statistics is shown in figure 3-(c).

From figure 3-(c), the linear regression is easily performed

to determine automatically the parameter σ of the statistical

shadow detection test.
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(a) Image patch (b) Raw regression (c) Robust regression

Fig. 3. Estimation of parameter σ of the noise model 2. On

square patches, local statistics are computed to determine the

parameter σ. Each dot represents the local statistic (variance

on vertical axis versus mean on horizontal axis) of a single

patch. Since a square patch cannot contain only one tissue, as

illustrated on the left, robust statistics are used to compute the

mean and variance. The use of robust statistics ((c)) enables

a more accurate regression and estimation of σ compared to

the regression using standard statistics ((b)).

3.5. Regularization

Since acoustic shadows are due to an anatomical structure that

reflects the wave energy (which more precisely depends on

the angle between the beam and the interface), the detection

of acoustic shadows should vary smoothly between two con-

secutive lines. A simple regularization scheme is therefore

adopted: for each line, the detection index is defined as the

position of the detected shadow along the line. A median fil-

tering of the detection indexes is performed on a local neigh-

borhood of 10 adjacent lines to regularize the solution.

4. RESULTS

4.1. Material

The method was tested with 2D tracked freehand ultrasound

images acquired during a neurosurgical procedure. The sonosite

cranial 4−7MHz probe was tracked the Medtronic StealthStation©

neuronavigation system. Ultrasound data were thus registered

with the coordinate system of the preoperative Magnetic Res-

onance Images (MRI).

4.2. Detection of acoustic shadows

The estimation of acoustic shadows was tested on patient data

with a brain cavernoma. In figure 4-a, a typical image of the

sequence is shown. Figure 4-b and 4-c show the results of

the shadow detection, without and with regularization respec-

tively. For legibility, only a few lines were drawn. However,

a dense estimation of the mask is performed by increasing

the number of lines. The regularization removed false posi-

tive detections and smoothed the shape of the detected shad-

ows. Regions of acoustic shadow and strong signal attenua-

tion were detected by the method.

(a) Initial B-scan (b) Raw estimation (c) Regularized

Fig. 4. Example of shadow estimation on intraoperative brain

ultrasound images. For legibility, only a few lines were sam-

pled in this case. On the input B-scan (a), results of the

shadow estimation are given without regularization (b) and

after regularization (c). The regularization removes outliers

and smoothes the profile of the shadow boundaries.

4.3. Impact on reconstruction

The impact of shadow detection was tested on a 3D recon-

struction task. Given a sequence of 2D images and their 3D
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tracked positions and orientations, a regular 3D lattice vol-

ume can be reconstructed. The reconstruction method pre-

sented in [9] was used. In this experiment, the sequence was

composed of two view points that differ mostly by a trans-

lation. Technically, areas detected as shadows regions were

ignored in the distance-weighted interpolation step. Figure

5-a shows a slice of the initial reconstruction and 5-b is the

reconstructed slice when taking into account the detection of

acoustic shadows. Figure 5-c shows the corresponding pre-

operative MR slice. Artifacts are visible, not only at the bor-

der between the two views, but also in deep regions. For in-

stance, deep cerebral structures previously difficult to make

out (lenticular nucleus and choroid plexus, see arrows) are

clearly visble on the reconstructed US image when taking

into account acoustic shadows. As a numerical assessment,

the correlation ratio [10] was computed between the recon-

structed US and the pre-operative MR. The correlation ratio

increases from 0.15312 to 0.173996 when taking into account

shadows, indicating objectively that the 3D reconstruction

was improved.

(a) Initial (b) Corrected (c) MR slice

Fig. 5. Impact of the shadow estimation on the reconstruc-

tion of 3D intraoperative brain ultrasound images. A se-

quence of 3D freehand ultrasound was acquired during brain

surgery. During the sequence, two sweeps were done with

different viewing angles. The two sweeps are compounded in

one reconstructed volume. Image (a) shows a slice of the re-

constructed volume with a Distance-Weighted reconstruction

method. Reconstruction artifacts are visible on the bound-

aries of anatomical structures (sulci and cerebral falx). When

incorporating the shadow estimation mask (figure (b)), arti-

facts are removed and deep structures appear clearly. The

”border artifacts” at the left and right of the image are due to

the B-scan mask that has been taken into account when recon-

structing image (b).

5. CONCLUSION

We have presented an automatic method to detect shadows in

ultrasound images that uses image statistics and regulariza-

tion for accurate detection of shadow borders. Experiments

using data from intraoperative brain ultrasound demonstrate

that shadow detection leads to a more accurate 3D reconstruc-

tion when compounding US from two different view points.

Further investigation will begin with the analysis of inten-

sity attenuation within scans and between scans to distinguish

the combined effects of anatomical structures, ultrasound ma-

chine settings such as gain or depth focus and include quan-

titative evaluation of the impact of shadow detection on reg-

istration, 3D reconstruction and structure segmentation. Fur-

thermore, the tuning of the neighborhood size for regulariza-

tion should be studied further and determined with respect to

the scale of image structures.
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